A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material

The book discusses the modeling of induction and synchronous machines aimed at the synthesis of dedicated control strategies. The first part focuses on induction machines (IMs), and starts with the analysis of the principle of operation, which is based on the induction phenomenon. It then establishes the a-b-c model, assuming a sinusoidal spatial repartition of the air gap flux density, a linear magnetic circuit, and constant phase resistors. The a-b-c model enables the establishment of a state representation of the induction machine. Then, the Park transformation is introduced and applied to the IM a-b-c model, leading to its Park one, which is then used to analyze the IM steady-state operation. The chapter also includes a case study dealing with the doubly fed induction machine, which is widely integrated in wind power generating systems. Following the introduction of the continuous development of synchronous machines

(SMs), the second part establishes the a-b-c model for salient pole machines. Then, the Park transformation is applied to the established a-b-c model, leading to the Park one. The section highlights the formulation and analysis of the electromagnetic torque, with its synchronizing and reluctant components investigated in terms of the torque angle. Subsequently, it characterizes the operation at (i) maximum torque and (ii) unity power factor before focusing on the flux weakening approaches that could be implemented in SMs considering both smooth and salient pole topologies. Lastly, it presents a case study dealing with an investigation of the main features of the electric drive unit of a hybrid propulsion system and the possibility of their improvement, with an emphasis on the extension of the flux weakening range.

The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state variable estimation in the absence of mechanical sensors, power factor correction, machine flux optimization, fault detection and isolation, and fault tolerant control. Describing the complete control approach, both controller and observer designs are

demonstrated using advanced nonlinear methods, stability and performance are analysed using powerful techniques, including implementation considerations using digital computing means. Other key features: • Covers the main types of AC motors including triphase, multiphase, and doubly fed induction motors, wound rotor, permanent magnet, and interior PM synchronous motors • Illustrates the usefulness of the advanced control methods via industrial applications including electric vehicles, high speed trains, steel mills, and more • Includes special focus on sensorless nonlinear observers, adaptive and robust nonlinear controllers, output-feedback controllers, fault detection and isolation algorithms, and fault tolerant controllers This comprehensive volume provides researchers and designers and R&D engineers with a single-source reference on AC motor system drives in the automotive and transportation industry. It will also appeal to advanced students in automatic control, electrical, power systems, mechanical engineering and robotics, as well as mechatronic, process, and applied control system engineers.

Electrical Machine Design caters to the requirements of undergraduate and postgraduate students of electrical engineering and industry novices. The authors have adopted a flow chart based approach to explain the subject. This enables an in-depth understanding of the design of different types of electrical machines with an appropriate introduction to basic design considerations and the magnetic circuits involved. The book aids students to prepare for various competitive exams through objective

questions, worked-out examples and review questions in increasing order of difficulty. MATLAB and C programs and Finite Element simulations using Motor Solve, featured in the text offers a profound new perspective in understanding of automated design of electrical machines.

This monograph shows the reader how to avoid the burdens of sensor cost, reduced internal physical space, and system complexity in the control of AC motors. Many applications fields—electric vehicles, wind- and wave-energy converters and robotics, among them—will benefit. Sensorless AC Electric Motor Control describes the elimination of physical sensors and their replacement with observers, i.e., software sensors. Robustness is introduced to overcome problems associated with the unavoidable imperfection of knowledge of machine parameters—resistance, inertia, and so on—encountered in real systems. The details of a large number of speed- and/or position-sensorless ideas for different types of permanent-magnet synchronous motors and induction motors are presented along with several novel observer designs for electrical machines. Control strategies are developed using high-order, sliding-mode and quasi-continuous-sliding-mode techniques and two types of observer-controller schemes based on backstepping and sliding-mode techniques are described. Experimental results validate the performance of these observer and controller configurations with test trajectories of significance in difficult sensorless-AC-machine problems. Control engineers working with AC motors in a variety of industrial

environments will find the space-and-cost-saving ideas detailed in Sensorless AC Electric Motor Control of much interest. Academic researchers and graduate students from electrical, mechanical and control-engineering backgrounds will be able to see how advanced theoretical control can be applied in meaningful real systems. This book introduces electrical machine modeling and control for electrical engineering and science to graduate, undergraduate students as well as researchers, who are working on modeling and control of electrical machines. It targets electrical engineering students who have no time to derive mathematical equations for electrical machines in particular induction machine (IM) and doubly fed induction machines (DFIM). The main focus is on the application of field oriented control technique to induction motor (IM) and doubly fed induction motor (DFIM) in details, and since the induction motors have many drawback using this technique, therefore the application of a nonlinear control technique (feedback linearization) is applied to a reduced order model of DFIM to enhance the performance of doubly fed induction motor. Features Serves as text book for electrical motor modeling, simulation and control; especially modeling of induction motor and doubly fed induction motor using different frame of references. Vector control (field oriented control) is given in more detailed, and is applied to induction motor. A nonlinear controller is applied to a reduced model of an doubly induction motor associated with a linear observer to estimate the unmeasured load torque, which is used to enhance the performance of the vector control to doubly fed induction motor.

Access to the full MATLAB/SIMULINK blocks for simulation and control. In this monograph the authors solve the modern scientific problems connected with A.C. motors and generators, based first on the detailed consideration of their physical phenomena. The authors describe the theory and investigative methods they developed and applied in practice, which are considered to be of essential interest for specialists in the field of the electrical engineering industry in European countries, the USA, Argentina, and Brazil, as well as in such countries as India, China, and Iran. This book will be of interest to engineers specialized in the field of the manufacture, operation, and repair of A.C. machines (motors and generators) as well as electric drives; to professors, lecturers, and post-graduate students of technical universities, who are specializing in the field of electric machine engineering and electric drives; and electric machine engineering.

Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design

concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource: Delivers the multi-physics know-how based on practical electric machine design methodologies Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives Incorporates case studies from industrial practice and research and development projects Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.

High Performance Control of AC Drives with Matlab®/Simulink Explore this indispensable update to a popular graduate text on electric drive techniques and the

latest converters used in industry The Second Edition of High Performance Control of AC Drives with Matlab®/Simulink delivers an updated and thorough overview of topics central to the understanding of AC motor drive systems. The book includes new material on medium voltage drives, covering state-of-the-art technologies and challenges in the industrial drive system, as well as their components, and control, current source inverter-based drives, PWM techniques for multilevel inverters, and low switching frequency modulation for voltage source inverters. This book covers threephase and multiphase (more than three-phase) motor drives including their control and practical problems faced in the field (e.g., adding LC filters in the output of a feeding converter), are considered. The new edition contains links to Matlab®/Simulink models and PowerPoint slides ideal for teaching and understanding the material contained within the book. Readers will also benefit from the inclusion of: A thorough introduction to high performance drives, including the challenges and requirements for electric drives and medium voltage industrial applications. An exploration of mathematical and simulation models of AC machines, including DC motors and squirrel cage induction motors A treatment of pulse width modulation of power electronic DC-AC converter, including the classification of PWM schemes for voltage source and current source inverters Examinations of harmonic injection PWM and field-oriented control of AC machines Voltage source and current source inverter-fed drives and their control Modelling and control of multiphase motor drive system Supported with a companion

website hosting online resources. Perfect for senior undergraduate, MSc and PhD students in power electronics and electric drives, High Performance Control of AC Drives with Matlab®/Simulink will also earn a place in the libraries of researchers working in the field of AC motor drives and power electronics engineers in industry. Taking a failure prevention perspective, this book provides engineers with a balance between analysis and design. The new edition presents a more thorough treatment of stress analysis and fatigue. It integrates the use of computer tools to provide a more current view of the field. Photos or images are included next to descriptions of the types and uses of common materials. The book has been updated with the most comprehensive coverage of possible failure modes and how to design with each in mind. Engineers will also benefit from the consistent approach to problem solving that will help them apply the material on the job.

A fully expanded new edition documenting the significant improvements that have been made to the tests and monitors of electrical insulation systems Electrical Insulation for Rotating Machines: Design, Evaluation, Aging, Testing, and Repair, Second Edition covers all aspects in the design, deterioration, testing, and repair of the electrical insulation used in motors and generators of all ratings greater than fractional horsepower size. It discusses both rotor and stator windings; gives a historical overview of machine insulation design; and describes the materials and manufacturing methods of the rotor and stator winding insulation systems in current use (while covering

systems made over fifty years ago). It covers how to select the insulation systems for use in new machines, and explains over thirty different rotor and stator winding failure processes, including the methods to repair, or least slow down, each process. Finally, it reviews the theoretical basis, practical application, and interpretation of forty different tests and monitors that are used to assess winding insulation condition, thereby helping machine users avoid unnecessary machine failures and reduce maintenance costs. Electrical Insulation for Rotating Machines: Documents the large array of machine electrical failure mechanisms, repair methods, and test techniques that are currently available Educates owners of machines as well as repair shops on the different failure processes and shows them how to fix or otherwise ameliorate them Offers chapters on testing, monitoring, and maintenance strategies that assist in educating machine users and repair shops on the tests needed for specific situations and how to minimize motor and generator maintenance costs Captures the state of both the present and past "art" in rotating machine insulation system design and manufacture, which helps designers learn from the knowledge acquired by previous generations An ideal read for researchers, developers, and manufacturers of electrical insulating materials for machines, Electrical Insulation for Rotating Machines will also benefit designers of motors and generators who must select and apply electrical insulation in machines. CD-ROM contains: Working Model 2D Homework Edition 4.1 -- Working Model simulations -- Author-written programs (including FOURBAR and DYNACAM) --

Scripted Matlab analysis and simulations files -- FE Exam Review for Kinematics and Applied Dynamics.

Maximize your company's energy output while ensuring the reliability and longevity of your industrial electrical equipment! Everything you need for selection, applications, operations, diagnostic testing, troubleshooting and maintenance for all capital equipment placed firmly in your grasp. Keeping your equipment running efficiently and smoothly could make the difference between profit and loss. Electrical Equipment Handbook: Troubleshooting and Maintenance provides you with the state-of-the-art information for achieving the highest performance from your transformers, motors, speed drives, generator, rectifiers, and inverters. With this book in hand you'll understand various diagnostic testing methods and inspection techniques as well as advance fault detection techniques critical components and common failure modes. This handbook will answer all your questions about industrial electrical equipment. In Electrical Equipment Handbook: Troubleshooting and Maintenance, you will: Learn about the various types of transformers, motors, variable speed drives, generators, rectifiers, inverters, and uninterrupted power systems. Understand diagnostic testing and inspection, advanced fault detection techniques, critical components, and common failure modes. Study selection criteria, commissioning requirements, predictive and preventive maintenance, reliability, testing and cost discover the maintenance required to minimize their operating cost and maximize their efficiency, reliability and longevity.

Electric Motors and Drives: Fundamentals, Types and Applications provides information regarding the inner workings of motor and drive system. The book is comprised of nine chapters that cover several aspects and types of motor and drive systems. Chapter 1 discusses electric motors, and Chapter 2 deals with power electronic converters for motor drives. Chapter 3 covers the conventional d.c. motors, while Chapter 4 tackles inductions motors – rotating field, slip, and torque. The book also talks about the operating characteristics of induction motors, and then deals with the inverter-fed induction motor drives. The stepping motor systems; the synchronous, switched reluctance, and brushless d.c. drives; and the motor/drive selection are also covered. The text will be of great use to individuals who wish to familiarize themselves with motor and drive systems.

Complete coverage of power line design and implementation "This text provides the essential fundamentals of transmission line design. It is a good blend of fundamental theory with practical design guidelines for overhead transmission lines, providing the basic groundwork for students as well as practicing power engineers, with material generally not found in one convenient book." IEEE Electrical Insultation Magazine Electrical Design of Overhead Power Transmission Lines discusses everything electrical engineering students and practicing engineers need to know to effectively design overhead power lines. Cowritten by experts in power engineering, this detailed guide addresses component selection and design, current IEEE standards, load-flow analysis, power system stability, statistical risk management of weather-related overhead line failures, insulation, thermal rating, and other essential topics.

Clear learning objectives and worked examples that apply theoretical results to real-world problems are included in this practical resource. Electrical Design of Overhead Power Transmission Lines covers: AC circuits and sequence circuits of power networks Matrix methods in AC power system analysis Overhead transmission line parameters Modeling of transmission lines AC power-flow analysis using iterative methods Symmetrical and unsymmetrical faults Control of voltage and power flow Stability in AC networks High-voltage direct current (HVDC) transmission Corona and electric field effects of transmission lines Lightning performance of transmission lines Coordination of transmission line insulation Ampacity of overhead line conductors

This book presents deep analysis of machine control for different applications, focusing on its implementation in embedded systems. Necessary peripherals for various microcontroller families are analysed for machine control and software architecture patterns for high-quality software development processes in motor control units are described. Abundant figures help the reader to understand the theoretical, simulation and practical implementation stages of machine control. Model-based design, used as a mathematical and visual approach to construction of complex control algorithms, code generation that eliminates hand-coding errors, and co-simulation tools such as Simulink, PSIM and finite element analysis are discussed. The simulation and verification tools refine, and retest the models without having to resort to prototype construction. The book shows how a voltage source inverter can be designed with tricks, protection elements, and space vector modulation. Practical Control of Electric Machines: Model-Based Design and Simulation is based on the author's experience of a wide variety of systems in domestic, automotive and industrial environments, and most

examples have implemented and verified controls. The text is ideal for readers looking for an insight into how electric machines play an important role in most real-life applications of control. Practitioners and students preparing for a career in control design applied in electric machines will benefit from the book's easily understood theoretical approach to complex machine control. The book contains mathematics appropriate to various levels of experience, from the student to the academic and the experienced professional. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.

Analyze and Solve Real-World Machine Design Problems Using SI Units Mechanical Design of Machine Components, Second Edition: SI Version strikes a balance between method and theory, and fills a void in the world of design. Relevant to mechanical and related engineering curricula, the book is useful in college classes, and also serves as a reference for practicing engineers. This book combines the needed engineering mechanics concepts, analysis of various machine elements, design procedures, and the application of numerical and computational tools. It demonstrates the means by which loads are resisted in mechanical components, solves all examples and problems within the book using SI units, and helps readers gain valuable insight into the mechanics and design methods of machine components. The author presents structured, worked examples and problem sets that showcase analysis and design techniques, includes case studies that present different aspects of the same design or analysis problem, and links together a variety of topics in successive chapters. SI units are

used exclusively in examples and problems, while some selected tables also show U.S. customary (USCS) units. This book also presumes knowledge of the mechanics of materials and material properties. New in the Second Edition: Presents a study of two entire real-life machines Includes Finite Element Analysis coverage supported by examples and case studies Provides MATLAB solutions of many problem samples and case studies included on the book's website Offers access to additional information on selected topics that includes website addresses and open-ended web-based problems Class-tested and divided into three sections, this comprehensive book first focuses on the fundamentals and covers the basics of loading, stress, strain, materials, deflection, stiffness, and stability. This includes basic concepts in design and analysis, as well as definitions related to properties of engineering materials. Also discussed are detailed equilibrium and energy methods of analysis for determining stresses and deformations in variously loaded members. The second section deals with fracture mechanics, failure criteria, fatique phenomena, and surface damage of components. The final section is dedicated to machine component design, briefly covering entire machines. The fundamentals are applied to specific elements such as shafts, bearings, gears, belts, chains, clutches, brakes, and springs.

Presents a multi-objective design approach to the many powermagnetic devices in use today Power Magnetic Devices: A Multi-Objective Design Approachaddresses the design of power magnetic devices—including inductors, transformers, electromagnets, and rotating electric machinery—using a structured design approach based on formal single- and multi-objective optimization. The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices

considered in the book are then set forth. Thismaterial is then used for inductor design so readers can start thedesign process. Core loss is next considered: this material is used to support transformer design. A chapter on force and torqueproduction feeds into a chapter on electromagnet design. This is followed by chapters on rotating machinery and the design of apermanent magnet AC machine. Finally, enhancements to the designprocess including thermal analysis and AC conductor losses due toskin and proximity effects are set forth. Power Magnetic Devices: Focuses on the design process as it relates to power magnetic devices such as inductors, transformers, electromagnets, androtating machinery Offers a structured design approach based on single- and multi-objective optimization Helps experienced designers take advantage of new techniques which can yield superior designs with less engineering time Provides numerous case studies throughout the book tofacilitate readers' comprehension of the analysis and designprocess Includes Powerpoint-slide-based student and instructor lecturenotes and MATLAB-based examples, toolboxes, and design codes Designed to support the educational needs of students, PowerMagnetic Devices: A Multi-Objective Design Approach also serves as a valuable reference tool for practicing engineers and designers. MATLAB examples are available via the book supportsite.

Generously illustrated with over 1600 dispaly equations and more than 145 drawings, diagrams and photographs, this book is a handy, single-source reference suited to readers with a wide span of educational backgrounds and technical experience. Comprehensive in both scope and depth this manual covers all significant aspects of the field, such as Amperes Law and Faraday's Law, emphasing basic explanations of motor behaviour, derives all important equations and relationships required to analyze, design and apply polyphase

induction motors, uses worldwide SI units or international MKS system of units as well as practical units used in the US and shows how to apply working equations to real-life situations with numerical examples... and more.

Most traditional power systems textbooks focus on high-voltage transmission. However, the majority of power engineers work in urban factories, buildings, or industries where power comes from utility companies or is self-generated. Introduction to Electrical Power and Power Electronics is the first book of its kind to cover the entire scope of electrical power and power electronics systems in one volume—with a focus on topics that are directly relevant in power engineers' daily work. Learn How Electrical Power Is Generated, Distributed, and Utilized Composed of 17 chapters, the book is organized into two parts. The first part introduces aspects of electrical power that most power engineers are involved in during their careers, including the distribution of power to load equipment such as motors via step-down transformers, cables, circuit breakers, relays, and fuses. For engineers working with standalone power plants, it also tackles generators. The book discusses how to design and operate systems for economic use of power and covers the use of batteries in greater depth than typically found in traditional power system texts. Understand How Power Electronics Work in Modern Systems The second part delves into power electronics switches, as well as the DC-DC converters, AC-DC-AC converters, and frequency converters used in variablefrequency motor drives. It also discusses quality-of-power issues in modern power systems with many large power electronics loads. A chapter on power converter cooling presents important interdisciplinary design topics. Draw on the Author's Extensive Industry and Teaching Experience This timely book draws on the author's 30 years of work experience at

General Electric, Lockheed Martin, and Westinghouse Electric and 15 years of teaching electrical power at the U.S. Merchant Marine Academy. Designed for a one-semester or two-quarter course in electrical power and power electronics, it is also ideal for a refresher course or as a one-stop reference for industry professionals.

This book aims to offer a thorough study and reference textbook on electrical machines and drives. The basic idea is to start from the pure electromagnetic principles to derive the equivalent circuits and steady-state equations of the most common electrical machines (in the first parts). Although the book mainly concentrates on rotating field machines, the first two chapters are devoted to transformers and DC commutator machines. The chapter on transformers is included as an introduction to induction and synchronous machines, their electromagnetics and equivalent circuits. Chapters three and four offer an in-depth study of induction and synchronous machines, respectively. Starting from their electromagnetics, steady-state equations and equivalent circuits are derived, from which their basic properties can be deduced. The second part discusses the main power-electronic supplies for electrical drives, for example rectifiers, choppers, cycloconverters and inverters. Much attention is paid to PWM techniques for inverters and the resulting harmonic content in the output waveform. In the third part, electrical drives are discussed, combining the traditional (rotating field and DC commutator) electrical machines treated in the first part and the power electronics of part two. Field orientation of induction and synchronous machines are discussed in detail, as well as direct torque control. In addition, also switched reluctance machines and stepping motors are discussed in the last chapters. Finally, part 4 is devoted to the dynamics of traditional electrical machines. Also for the dynamics of induction and synchronous machine drives, the

electromagnetics are used as the starting point to derive the dynamic models. Throughout part 4, much attention is paid to the derivation of analytical models. But, of course, the basic dynamic properties and probable causes of instability of induction and synchronous machine drives are discussed in detail as well, with the derived models for stability in the small as starting point. In addition to the study of the stability in the small, a chapter is devoted to large-scale dynamics as well (e.g. sudden short-circuit of synchronous machines). The textbook is used as the course text for the Bachelor's and Master's programme in electrical and mechanical engineering at the Faculty of Engineering and Architecture of Ghent University. Parts 1 and 2 are taught in the basic course 'Fundamentals of Electric Drives' in the third bachelor. Part 3 is used for the course 'Controlled Electrical Drives' in the first master, while Part 4 is used in the specialised master on electrical energy.

Offering a broad-based review of the factors affecting the design, assembly and behaviour of bolted joints and their components in all industries, this work details various assembly options as well as specific failure modes and strategies for their avoidance. This edition features material on: the contact stresses between bolt head or nut face and the joint; thread forms, series and classes; the stiffness of raised face flange joints; and more.

In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as

synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machines An expanded section on the design of permanent magnet synchronous machines, now reporting on the design of tooth-coil, high-torque permanent magnet machines and their properties Large updates and new material on synchronous reluctance machines, air-gap inductance, losses in and resistivity of permanent magnets (PM), operating point of loaded PM circuit, PM machine design, and minimizing the losses in electrical machines> End-of-chapter exercises and new direct design examples with methods and solutions to real design problems> A supplementary website hosts two machine design examples created with MATHCAD: rotor surface magnet permanent magnet machine and squirrel cage induction machine calculations. Also a MATLAB code for optimizing the design of an induction motor is provided Outlining a step-by-step sequence of machine design, this book enables electrical machine designers to design rotating electrical machines. With a thorough treatment of all existing and emerging technologies in the field, it is a useful manual for professionals working in the diagnosis of electrical machines and drives. A rigorous introduction to the theoretical principles and techniques makes the book invaluable to senior electrical engineering students, postgraduates, researchers and university lecturers involved in electrical drives technology and electromechanical energy conversion.

Rapid increases in energy consumption and emphasis on environmental protection have posed challenges for the motor industry, as has the design and manufacture of highly efficient, reliable, cost-effective, energy-saving, quiet, precisely controlled, and long-lasting electric motors. Suitable for motor designers, engineers, and manufacturers, as well

The emphasis of the book is on the question of Why – only if why an algorithm is successful is understood, can it be properly applied, and the results trusted. Algorithms are often taught side by side without showing the similarities and differences between them. This book addresses the commonalities, and aims to give a thorough and indepth treatment and develop intuition, while remaining concise. This useful reference should be an essential on the bookshelves of anyone employing machine learning techniques.

* The first single volume resource for researchers in the field who previously had to depend on separate papers and conference records to attain a working knowledge of the subject. * Brings together the field's diverse approaches into an integrated and comprehensive theory of PWM

"Institute of Electrical and Electronics Engineers."

A self-contained, comprehensive and unified treatment of electrical machines, including consideration of their control characteristics in both conventional and semiconductor switched circuits. This new edition has been expanded and updated to include material

which reflects current thinking and practice. All references have been updated to conform to the latest national (BS) and international (IEC) recommendations and a new appendix has been added which deals more fully with the theory of permanentmagnets, recognising the growing importance of permanent-magnet machines. The text is so arranged that selections can be made from it to give a short course for nonspecialists, while the book as a whole will prepare students for more advanced studies in power systems, control systems, electrical machine design and general industrial applications. Includes numerous worked examples and tutorial problems with answers. This book highlights procedures utilized by the design departments of leading global manufacturers, offering readers essential insights into the electromagnetic and thermal design of rotating field (induction and synchronous) electric machines. Further, it details the physics of the key phenomena involved in the machines' operation, conducts a thorough analysis and synthesis of polyphase windings, and presents the tools and methods used in the evaluation of winding performance. The book develops and solves the machines' magnetic circuits, and determines their electromagnetic forces and torques. Special attention is paid to thermal problems in electrical machines, along with fluid flow computations. With a clear emphasis on the practical aspects of electric machine design and synthesis, the author applies his nearly 40 years of professional experience with electric machine manufacturers – both as an employee and consultant - to provide readers with the tools they need to determine fluid flow parameters and

compute temperature distributions.

This book addresses the vector control of three-phase AC machines, in particular induction motors with squirrel-cage rotors (IM), permanent magnet synchronous motors (PMSM) and doubly-fed induction machines (DFIM), from a practical design and development perspective. The main focus is on the application of IM and PMSM in electrical drive systems, where field-orientated control has been successfully established in practice. It also discusses the use of grid-voltage oriented control of DFIMs in wind power plants. This second, enlarged edition includes new insights into flatness-based nonlinear control of IM, PMSM and DFIM. The book is useful for practitioners as well as development engineers and designers in the area of electrical drives and wind-power technology. It is a valuable resource for researchers and students.

Brushless permanent-magnet motors provide simple, low maintenance, and easily controlled mechanical power. Written by two leading experts on the subject, this book offers the most comprehensive guide to the design and performance of brushless permanent-magnetic motors ever written. Topics range from electrical and magnetic design to materials and control. Throughout, the authors stress both practical and theoretical aspects of the subject, and relate the material to modern software-based techniques for design and analysis. As new magnetic materials and digital power control techniques continue to widen the scope of the applicability of such motors, the

need for an authoritative overview of the subject becomes ever more urgent. Design of Brushless Permanent-Magnet Motors fits the bill and will be read by students and researchers in electric and electronic engineering.

"AC Machine Systems" stresses both analysis methods and operating performances of AC machine systems, including variable speed drive system of AC machines with power electronics and control devices, power energy system composed of AC machines and power lines, special machine system with special machines and special loads, electric machine system consisting of AC machines and excitation devices. Based on a single coil, the Multi-Loop Theory is thoroughly described, and examples of how to use the new approach are presented. This book provides a new way for analyzing the AC machine systems. This book is designed for the researchers and postgraduates in the field of electric machines and control. It's also a reference book for related technicians. This book is written in memory of Professor Jingde Gao, past-president of Tsinghua University, Member of Chinese Academy of Sciences. Another two authors, Linzheng Zhang and Xiangheng Wang both are Professors in Electrical Engineering Dept. of Tsinghua University.

The only book on the market that emphasizes machine design beyond the basic principles of AC and DC machine behavior AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC

machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. Introduction to AC Machine Design includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter. Based on the author's notes, as well as after years of classroom instruction, Introduction to AC Machine Design: Brings to light more advanced principles of machine design—not just the basic principles of AC and DC machine behavior Introduces electrical machine design to neophytes while also being a resource for experienced designers Fully examines AC machine design, beginning with basic electromagnetic principles Covers the many facets of the induction machine design Introduction to AC Machine Design is an important text for graduate school students studying the design of electrical machinery, and it will be of great interest to manufacturers of electrical machinery.

Copyright: 7dea538a2d57212396d384a7c1c41809