Deepwater Mooring Systems Design And Analysis A Practical This book comprises select proceedings of the First Indian Symposium on Offshore Geotechnics. It addresses state of the art and emerging challenges in offshore design and construction. The theme papers from leading academicians and practitioners provide a comprehensive overview of the broad topics encompassing various challenges in offshore geotechnical engineering. It covers various aspects pertaining to offshore geotechnics, such as offshore site investigation, soil characterization, geotechnics related to offshore renewable energy converters, offshore foundations and anchoring systems, pipelines, and deep sea explorations. This volume provides a comprehensive reference for professionals and researchers in offshore, civil and maritime engineering and for soil mechanics specialists. Publishing papers presented at the Fourth International Conference on Fluid Structure Interactions, this book features contributions from experts specialising in this field on new ideas and the latest techniques. A valuable addition to this successful series and will be of great interest to mechanical and structural engineers, offshore engineers, earthquake engineers, naval engineers and any other experts involved in topics related to fluid structure interaction. Topics covered include: Hydrodynamic Forces; Response of Structures including Fluid Dynamic; Offshore Structure and Ship Dynamics; Fluid Pipeline Interactions; Structure Response to Serve Shock and Blast Loading; Vortex Shedding and Flow Induced Vibrations; Cavitations Effects in Turbo Machines and Pumps; Wind Effects on Bridges and Tall Structures; Mechanics of Cables, Rivers and Moorings; Building Biofluids and Biological Tissue Interaction Problems in CFD; Experimental Studies and Validation; Vibrations and Noise; Free Surface Flows and Moving Boundary Problems. Mooring systems for floating facilities that are used offshore to produce oil and gas, consisting of individual mooring lines and foundations, are currently designed on the basis of individual components and on a case-by-case basis. The most heavily loaded line and anchor are checked under extreme loading conditions (hurricane and loop current) with the system of lines intact and with one line removed. However, the performance of the entire mooring system depends more directly on the performance of the system of lines and foundations rather than on the performance of a single component. In this study, a floating production system design originally developed by the industry consortium, DeepStar, was chosen for study. The mooring system was designed for three different nominal water depths: 1000, 2000 and 3000 m. It is a classic spar with steel mooring lines in 1000 m of water and polyester mooring lines in deeper depths. Based on simulated results of loads on mooring lines and foundations using a numerical model, reliability analyses were conducted using representative probabilistic descriptions of the extreme met-ocean conditions, hurricanes and loop currents, in the Gulf of Mexico. The probability of failure of individual mooring line components during a 20-year design life is calculated first, followed by that of a complete mooring line which consists of top and bottom chains, a steel cable or polyester rope at the middle and a suction caisson foundation, and finally that of the mooring system. It is found that foundations have failure probabilities that are more than an order of magnitude smaller than those for lines under extreme loading. Mooring systems exhibit redundancy in that the failure of the most heavily loaded component during an extreme event does not necessarily lead to failure of the system. The system reliability and redundancy are greater for the taut versus semi-taut systems and is greater for designs governed by loop current versus hurricane events. Although this study concerns about the mooring systems of a classical spar, the methodology of the reliability analysis and the conclusions made in this study may have important implications to the other deepwater mooring systems. This volume gathers the latest advances, innovations, and applications in the field of wind engineering, as presented by leading international researchers and engineers at the XV Conference of the Italian Association for Wind Engineering (IN-VENTO 2018), held in Naples, Italy on September 9-12, 2018. It covers highly diverse topics, including aeroelasticity, bluff-body aerodynamics, boundary layer wind tunnel testing, computational wind engineering, structural dynamics and reliability, windstructure interaction, flow-induced vibrations, wind modeling and forecast, wind disaster mitigation, and wind climate assessment. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaboration among different specialists. Design for Excellence contains papers from a conference organised by Brunel University. This book will be useful for designers, engineers, software developers, and other technologists working in a wide variety of engineering applications. Both those working in industry and in the academic environment will want to have access to this valuble resource. CONTENTS INCLUDE: A strategic overview of UK product development Technology management – a methodology towards achieving design excellence within the pharmaceutical industry Designing safer systems – the application of human factors methods From environmental assessment results to DFE product changes – an evaluation of quantitative and qualitative methods Design determines 70 percent of cost? A review of implications for design evaluation Using correlation chains to link customer requirements and physical laws How to manage '3-GEN' products and services Strain based shallow shell finite element for circular cylindrical shells Validation of manufacturing facilities in the pharmaceuticals industry The use of formal design techniques in the development of a model device Aesthetic intelligence – optimizing usercentred design Tendering for engineering contracts An investigation on specifications – component, source information areas, and contents This book presents selected articles from the International Conference on Asian and Pacific Coasts (APAC 2019), an event intended to promote academic and technical exchange on coastal related studies, including coastal engineering and coastal environmental problems, among Asian and Pacific countries/regions. APAC is jointly supported by the Chinese Ocean Engineering Society (COES), the Coastal Engineering Committee of the Japan Society of Civil Engineers (JSCE), and the Korean Society of Coastal and Ocean Engineers (KSCOE). APAC is jointly supported by the Chinese Ocean Engineering Page 5/23 Society (COES), the Coastal Engineering Committee of the Japan Society of Civil Engineers (JSCE), and the Korean Society of Coastal and Ocean Engineers (KSCOE). * Each chapter is written by one or more invited world-renowned experts * Information provided in handy reference tables and design charts * Numerous examples demonstrate how the theory outlined in the book is applied in the design of structures Tremendous strides have been made in the last decades in the advancement of offshore exploration and production of minerals. This book fills the need for a practical reference work for the state-of-the-art in offshore engineering. All the basic background material and its application in offshore engineering is covered. Particular emphasis is placed in the application of the theory to practical problems. It includes the practical aspects of the offshore structures with handy design guides, simple description of the various components of the offshore engineering and their functions. The primary purpose of the book is to provide the important practical aspects of offshore engineering without going into the nitty-gritty of the actual detailed design. • Provides all the important practical aspects of ocean engineering without going into the 'nittygritty' of actual design details. Simple to use - with handy design guides, references tables and charts. Numerous examples demonstrate how theory is Page 6/23 applied in the design of structures Deepwater Drilling: Well Planning, Design, Engineering, Operations, and Technology Application presents necessary coverage on drilling engineering and well construction through the entire lifecycle process of deepwater wells. Authored by an expert with real-world experience, this book delivers illustrations and practical examples throughout to keep engineers up-to-speed and relevant in today's offshore technology. Starting with pre-planning stages, this reference dives into the rig's elaborate rig and equipment systems, including ROVs, rig inspection and auditing procedures. Moving on, critical drilling guidelines are covered, such as production casing, data acquisition and well control. Final sections cover managed pressure drilling, top and surface hole 'riserless' drilling, and decommissioning. Containing practical guidance and test questions, this book presents a long-awaited resource for today's offshore engineers and managers. Helps readers gain practical experience from an author with over 35 years of offshore field know-how Presents offshore drilling operational best practices and tactics on well integrity for the entire lifecycle of deepwater wells Covers operations and personnel, from emergency response management, to drilling program outlines This report presents the results of a feasibility study of single point mooring (SPM) systems for the Mobile Offshore Base, a very large semi-submerged platform, in up to 10,000 ft (3000 m) water depth. The MOB will use the mooring in mild environments. Three moorings were investigated; Single Catenary Leg Mooring (SCLM), Multi-Catenary Anchor Leg Mooring (MCALM), and Catenary and Single Anchor Leg Mooring (CASALM). A force-deflection analysis computer program was written to analyze the CASALM and then adapted for the other moorings. Maximum mooring forces were predicted with the MOB in various sea states. The SLCM appears to be the most feasible mooring for the MOB. It can moor the MOB in sea state 3 without thruster assist, it is relatively inexpensive, and it is easy to install. The SCLM may consist of only a short chain attached to the MOB, a polyester rope extending down almost to the sea floor A vertical uplift anchor might be used to further limit the motions of the MOB. This report includes: Derivation of equations; Mooring computer program, description of program, and user's guide; Information on high holding, vertical uplift resisting anchors; and Information on synthetic fiber rope for deep water mooring. Progress in the Analysis and Design of Marine Structures collects the contributions presented at MARSTRUCT 2017. the 6th International Conference on Marine Structures (Lisbon, Portugal, 8-10 May 2017). The MARSTRUCT series of Conferences started in Glasgow, UK in 2007, the second event of the series having taken place in Lisbon, Portugal in March 2009, the third in Hamburg, Germany in March 2011, the fourth in Espoo, Finland in March 2013, and the fifth in Southampton, UK in March 2015. This Conference series deals with Ship and Offshore Structures, addressing topics in the areas of: - Methods and Tools for Loads and Load Effects - Methods and Tools for Strength Assessment - Experimental Analysis of Structures - Materials and Fabrication of Structures - Methods and Tools for Structural Design and Optimisation, and - Structural Reliability, Safety and Environmental Protection Progress in the Analysis and Design of Marine Structures is essential reading for academics, engineers and all professionals involved in the design of marine and offshore structures. Verifying the design of floating structures adequately requires both numerical simulations and model testing, a combination of which is referred to as the hybrid method of design verification. The challenge in direct scaling of moorings for model tests is the depth and spatial limitations in wave basins. It is therefore important to design and build equivalent mooring systems to ensure that the static properties (global restoring forces and global stiffness) of the prototype floater are matched by those of the model in the wave basin prior to testing. A fit-for-purpose numerical tool called STAMOORSYS is developed in this research for the design of statically equivalent deepwater mooring systems. The elastic catenary equations are derived and applied with efficient algorithm to obtain local and global static equilibrium solutions. A unique design page in STAMOORSYS is used to manually optimize the system properties in search of a match in global restoring forces and global stiffness. Up to eight mooring lines can be used in analyses and all lines have the same properties. STAMOORSYS is validated for single-line mooring analysis using LINANL and Orcaflex, and for global mooring analysis using MOORANL and Orcaflex. A statically equivalent deepwater mooring system for a representative structure that could be tested in the Offshore Technology Research Center at Texas A & M University is then designed using STAMOORSYS and the results are discussed. This paper generalized the catenary equations for inextensible mooring lines, by examining them in a dimensionless form, which allows the generation of certain design curves applicable to a broad class of naval offshore operations. As an example, candidate mooring lines for an offshore platform are considered in water depths ranging from 1000 - 4000 feet with the maximum tension prescribed at the 5% excursion from station. The candidate mooring lines consist of single component (all wire rope, all chain) as well as multiple component (wire rope/chain) combinations. Marine Structures Engineering is designed to help engineers meet the growing worldwide demand for construction of new $\frac{Page}{P}$ ports and the modernization of existing ports and terminals. It provides an authoritative guide to the design, construction, rehabilitation, repair, and maintenance of port and harbor structures. Each chapter is self-contained, allowing readers to access specific information. The Author draws on his extensive experience in offshore structure and port engineering to demonstrate evaluation, rehabilitation, repair, and maintenance of in-service marine structures. Also covered in detail are state-of-the-art approaches to: *marine structures in cold regions, with special attention to the role of ice loads, permafrost, and other ice effects *shiplifts, marine railways, shipways, and dry docks *offshore moorings *floating breakwaters *marinas *structures that protect bridge piers from ship impact. Offering practical information on all aspects of marine structures, this book serves as an indispensable resource to all engineers and professionals involved in design, construction, maintenance, and modernization of ports and harbors. This book addresses current and emerging challenges facing those working in offshore construction, design and research. Keynote papers from leading industry practitioners and academics provide a comprehensive overview of central topics covering deepwater anchoring, pipelines, foundation solutions for offshore wind turbines, site investigation, geoh The blowout of the Macondo well on April 20, 2010, led to enormous consequences for the individuals involved in the drilling operations, and for their families. Eleven workers on the Deepwater Horizon drilling rig lost their lives and 16 others were seriously injured. There were also enormous consequences for the companies involved in the drilling operations, to the Gulf of Mexico environment, and to the economy of the region and beyond. The flow continued for nearly 3 months before the well could be completely killed, during which time, nearly 5 million barrels of oil spilled into the gulf. Macondo Well-Deepwater Horizon Blowout examines the causes of the blowout and provides a series of recommendations, for both the oil and gas industry and government regulators, intended to reduce the likelihood and impact of any future losses of well control during offshore drilling. According to this report, companies involved in offshore drilling should take a "system safety" approach to anticipating and managing possible dangers at every level of operation -- from ensuring the integrity of wells to designing blowout preventers that function under all foreseeable conditions-- in order to reduce the risk of another accident as catastrophic as the Deepwater Horizon explosion and oil spill. In addition, an enhanced regulatory approach should combine strong industry safety goals with mandatory oversight at critical points during drilling operations. Macondo Well-Deepwater Horizon Blowout discusses ultimate responsibility and accountability for well integrity and safety of offshore equipment, formal system safety education and training of personnel engaged in offshore drilling, and guidelines that should be established so that well designs incorporate protection against the various credible risks associated with the drilling and Page 11/23 abandonment process. This book will be of interest to professionals in the oil and gas industry, government decision makers, environmental advocacy groups, and others who seek an understanding of the processes involved in order to ensure safety in undertakings of this nature. Practicing engineers in the offshore and reservoir engineering industry will find this timely volume filled with practical advice and expert information on current oil field development from oil exploration to production. Structural health monitoring (SHM) is a new engineering field with a growing tendency, based on technology development focused on data acquisition and analysis, to prevent possible damage in manmade structures and land's natural faults. The data are obtained from sensors and monitoring systems that allow detecting damages on structures, space vehicles, and land natural faults, to model their behavior under adverse scenarios, in order to search the detection of anomalies. Currently, there are many SHM systems with sensors based on different technologies like optical fiber, video cameras, optical scanners, wireless networks, and piezoelectric transducers, among others. In this context, the present book includes selected chapters with theoretical models and applications, to preserve infrastructure and prevent loss of human lives. The mooring system is a vital component of various Page 12/23 floating facilities in the oil, gas, and renewables industries. However, there is a lack of comprehensive technical books dedicated to the subject. Mooring System Engineering for Offshore Structures is the first book delivering in-depth knowledge on all aspects of mooring systems, from design and analysis to installation, operation, maintenance and integrity management. The book gives beginners a solid look at the fundamentals involved during mooring designs with coverage on current standards and codes, mooring analysis and theories behind the analysis techniques. Advanced engineers can stay up-to-date through operation, integrity management, and practical examples provided. This book is recommended for students majoring in naval architecture, marine or ocean engineering, and allied disciplines in civil or mechanical engineering. Engineers and researchers in the offshore industry will benefit from the knowledge presented to understand the various types of mooring systems, their design, analysis, and operations. Understand the various types of mooring systems and the theories behind mooring analysis Gain practical experience and lessons learned from worldwide case studies Combine engineering fundamentals with practical applications to solve today's offshore challenges Historically, submarine-mass failures or masstransport deposits have been a focus of increasingly Page 13/23 intense investigation by academic institutions particularly during the last decade, though they received much less attention by geoscientists in the energy industry. With recent interest in expanding petroleum exploration and production into deeper water-depths globally and more widespread availability of high-quality data sets, mass-transport deposits are now recognized as a major component of most deep-water settings. This recognition has lead to the realization that many aspects of these deposits are still unknown or poorly understood. This volume contains twenty-three papers that address a number of topics critical to further understanding mass-transport deposits. These topics include general overviews of these deposits, depositional settings on the seafloor and in the near-subsurface interval, geohazard concerns, descriptive outcrops, integrated outcrop and seismic data/seismic forward modeling, petroleum reservoirs, and case studies on several associated topics. This volume will appeal to a broad cross section of geoscientists and geotechnical engineers, who are interested in this rapidly expanding field. The selection of papers in this volume reflects a growing trend towards a more diverse blend of disciplines and topics, covered in the study of mass-transport deposits. Ship-shaped offshore units are some of the more economical systems for the development of offshore oil and gas, and are often preferred in marginal $_{Page\ 14/23}$ fields. These systems are especially attractive to develop oil and gas fields in deep and ultra-deep water areas and remote locations away from existing pipeline infrastructures. Recently, the ship-shaped offshore units have been applied to near shore oil and gas terminals. This 2007 text is an ideal reference on the technologies for design, building and operation of ship-shaped offshore units, within inevitable space requirements. The book includes a range of topics, from the initial contracting strategy to decommissioning and the removal of the units concerned. Coverage includes both fundamental theory and principles of the individual technologies. This book will be useful to students who will be approaching the subject for the first time as well as designers working on the engineering for shipshaped offshore installations. Advances in Renewable Energies Offshore is a collection of the papers presented at the 3rd International Conference on Renewable Energies Offshore (RENEW 2018) held in Lisbon, Portugal, on 8-10 October 2018. The 104 contributions were written by a diverse international group of authors and have been reviewed by an International Scientific Committee. The book is organized in the following main subject areas: - Modelling tidal currents - Modelling waves - Tidal energy devices (design, applications and experiments) - Tidal energy arrays - Wave energy devices (point absorber, multibody, applications, control, experiments, CFD, coastal OWC, OWC and turbines) - Wave energy arrays - Wind energy devices - Wind energy arrays - Maintenance and reliability - Combined platforms - Moorings, and - Flexible materials Advances in Renewable Energies Offshore collects recent developments in these fields, and will be of interest to academics and professionals involved in the above mentioned areas. This collection contains 24 papers presented at the 2003 International Symposium on Deepwater Mooring Systems: Concepts, Design, Analysis and Materials, held in Houston, Texas, October 2-3, 2003. Design practice in offshore geotechnical engineering has grown out of onshore practice, but the two application areas have tended to diverge over the last thirty years, driven partly by the scale of the foundation and anchoring elements used offshore, and partly by fundamental differences in construction and installation techniques. As a consequence offshore geotechnical engineering has grown as a speciality. The structure of Offshore Geotechnical Engineering follows a pattern that mimics the flow of a typical offshore project. In the early chapters it provides a brief overview of the marine environment, offshore site investigation techniques and interpretation of soil behaviour. It proceeds to cover geotechnical design of piled foundations, shallow foundations and anchoring systems. Three topics are then covered which require a more multi-disciplinary approach: the design of mobile drilling rigs, pipelines and geohazards. This book serves as a framework for undergraduate and postgraduate courses, and will appeal to professional engineers specialising in the offshore industry. This timely volume provides a comprehensive review of current technology for all ocean energies. It opens with an analysis of ocean thermal energy conversion (OTEC), with and without the use of an intermediate fluid. The historical and economic background is reviewed, and the geographical areas in which this energy could be utilized are pinpointed. The production of hydrogen as a side product, and environmental consequences of OTEC plants are looked at. The competitiveness of OTEC with conventional sources of energy is analysed. Optimisation, current research and development potential are also examined. Separate chapters provide a detailed examination of other ocean energy sources. The possible harnessing of solar ponds, ocean currents, and power derived from salinity differences is considered. There is a fascinating study of marine winds, and the question of using the ocean tides as a source of energy is examined, focussing on a number of tidal power plant projects, including data gathered from China, Australia, Great Britain, Korea and the USSR. Wave energy extraction has excited recent interest and activity, with a number of experimental pilot plants being built in northern Europe. This topic is discussed at length in view of its greater chance of implementation. Finally, geothermal and biomass energy are considered, and an assessment of their future is given. Each chapter contains bibliographic references. The author has also distinguished between energy schemes which might be valuable in less-industrialized regions of the world, but uneconomical in the developed countries. A large number of illustrations support the text. Every effort has been made to ensure that the book is readable and accessible for the specialist as well as the non-expert. It will be of particular interest to energy economists, engineers, geologists and oceanographers, and to environmentalists and environmental $\frac{Page}{17/23}$ #### engineers. Due to size limitations of wave basins worldwide it is necessary to employ statically equivalent truncated mooring and riser systems to test floating systems to be deployed in deep and ultra-deep waters. A procedure for the optimized design of the statically equivalent truncated mooring and riser system was developed using a Genetic Algorithm, considering that the equivalent mooring/system needs to reproduce the net static forces and moments exerted by the prototype mooring/riser system on the floater in its six rigid body degrees of freedom (surge, sway, heave, roll, pitch and yaw). A fit-for-purpose program was developed to evaluate the three-dimensional static equilibrium of floating structures. considering the attached mooring and steel catenary riser systems. The static response is calculated for a set of offsets in the surge direction from the calm water equilibrium position up to a maximum user defined offset. Four study cases were considered to demonstrate the effectiveness and robustness of a Genetic Algorithm procedure developed for the optimize design of the statically equivalent mooring and riser system. The four study cases were a semisubmersible with a symmetric polyester mooring system, a semisubmersible with a symmetric steel wire mooring system, a semisubmersible with a non-symmetric polyester mooring and steel catenary riser system attached, and a spar with a non-symmetric polyester mooring and a steel catenary riser system attached. To gain insight on the distortion of the dynamic mooring forces exerted on the floater when dynamic effects are ignored in the design, a procedure to assess the mooring system inertia and damping force contributions to the floater was developed. The application of the procedure was demonstrated using two study cases corresponding to deepwater polyester and steel mooring systems. The electronic version of this dissertation is accessible from Page 18/23 http://hdl.handle.net/1969.1/155327 Offshore Semi-Submersible Platform Engineering presents a primer on the analysis and design of semi-submersible platforms, in particular, while also covering general analysis and design guidelines of offshore compliant platforms. It introduces general structural designs and also examines the details of the various environmental impacts that act upon them, such as fatigue, fire, collisions, and water waves. Features Provides thorough coverage of the dynamic analysis and design of semi-submersible platforms Assists readers through detailed analysis methods using MATLAB® as well as other computer programs used to carry out structural analysis Explains impact loading and dynamic response through numerical analysis and examines the various factors that affect semi-submersibles Presented in a coursework teaching style, the content is explained in a step-by-step manner using color figures, photos, screen shots, and illustrations, thereby enabling students, researchers, and practicing engineers to carry out analysis with ease Offshore Semi-Submersible Platform Engineering serves as a practical guide for upper-level students and graduates of various engineering disciplines, for example, naval architecture, and structural, mechanical, pipeline, and offshore engineering. Further, it can also be used as a reference for practicing professionals, as the book covers a broad range of scholarships and applications. Intermediate foundations are used as anchors for floating platforms and ancillary structures, foundations for steel jackets, and to support seafloor equipment and offshore wind turbines. When installed by suction, they are an economical alternative to piling, and also may be completely removed. They are usually circular in plan and are essentially rigid when laterally loaded. Length to diameter embedment ratios, L/D, generally vary between 0.5 and 10, spanning the gap between shallow and deep foundations, although these are indicative boundaries and the response, rather than the embedment ratio, defines an intermediate foundation. The first chapters introduce foundation types; compare shallow. intermediate and deep foundation models and design; define unique design issues that make intermediate foundations distinct from shallow and deep foundations, as well as list their hazards that mainly occur during installation. Later chapters cover installation, in-place resistance and in-place response, and miscellaneous design considerations. There is no general agreement as to which design methods/models are appropriate, so models should only be as accurate as the data. Therefore, several reasonably accurate models are provided together with comprehensive discussion and advice. Example calculations and over 200 references are also included. This is the first book dedicated to the geotechnical design of intermediate foundations, and it will appeal to professional engineers specialising in the offshore industry. Reliability-based design is the only engineering methodology currently available which can ensure self-consistency in both physical and probabilistic terms. It is also uniquely compatible with the theoretical basis underlying other disciplines such as structural design. It is especially relevant as geotechnical design becomes subject to increasing codification and to code harmonization across national boundaries and material types. Already some codes of practice describe the principles and requirements for safety, serviceability, and durability of structures in reliability terms. This book presents practical computational methods in concrete steps that can be followed by practitioners and students. It also provides geotechnical examples illustrating reliability analysis and design. It aims to encourage geotechnical engineers to apply reliability-based design in a realistic context that recognises the complex variabilities in geomaterials and model uncertainties arising from a profession steeped in empiricism. By focusing on learning through computations and examples, this book serves as a valuable reference for engineers and a resource for students. Recent global events such as the devastating 1998 Papua New Guinea tsunami, the 2004 Sumatran tsunami and the 2006 SE Asia undersea network cable failure underscore the societal and economic effects of submarine mass movements. These events call upon the scientific community to understand submarine mass movement processes and consequences to assist in hazard assessment, mitigation and planning. Additionally, submarine mass movements are beginning to be recognized as prevalent in continental margin geologic sections. As such, they represent a significant if not dominant role in margin sedimentary processes. They also represent a potential hazard to hydrocarbon exploration and development, but also represent exploration indicators and targets. This volume consists of a collection of the latest scientific research by international experts in geological, geophysical, engineering and environment aspects of submarine mass failures, focussed on understanding the full spectrum of challenges presented by submarine mass movements and their consequences. For two decades, Ben Gerwick's ability to capture the current state of practice and present it in a straightforward, easily digestible manner has made Construction of Marine and Offshore Structures the reference of choice for modern civil and maritime construction engineers. The third edition of this perennial bestseller continues to be the most modern and authoritative guide in the field. Based on the author's lifetime of experience, the book also incorporates relevant published information from many sources. Updated and expanded to reflect new technologies, methods, and materials, the book includes new information on topics such as liquefaction of loose sediments, scour and erosion, archaeological concerns, high-performance steel, ultra-high-performance concrete, steel H piles, and damage from sabotage and terrorism. It features coverage of LNG terminals and offshore wind and wave energy structures. Clearly, concisely, and accessibly, this book steers you away from the pitfalls and toward the successful implementation of principles that can bring your marine and offshore projects to life. This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the technoeconomic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector. These proceedings gather a selection of refereed papers presented at the 1st Vietnam Symposium on Advances in Offshore Engineering (VSOE 2018), held on 1–3 November 2018 in Hanoi, Vietnam. The contributions from researchers, practitioners, policymakers, and entrepreneurs address technological and policy changes intended to promote renewable energies, and to generate business opportunities in oil and gas and offshore renewable energy. With a special focus on energy and geotechnics, the book brings together the latest lessons learned in offshore engineering, technological innovations, cost-effective and safer foundations and structural solutions, environmental protection, hazards, vulnerability, and risk management. The book offers a valuable resource for all graduate students, researchers and industrial practitioners working in the fields of offshore engineering and renewable energies. Copyright: 7e7986fae689fec2aaf9a77824738e2d